
 

D3.5 Workflow manager for generic HPC workloads    
Version 1.0  

 

1 

 

 

 

 

 

 

 

D3.5 Workflow manager for generic HPC workloads 

Version 1.0 

Document Information 

 

Contract Number 823844 

Project Website https://cheese-coe.eu/ 

Contractual Deadline 30/11/2021 (M37) 

Dissemination Level PU 

Nature OTHER 

Author Christoph Niethammer, Alexey Cheptsov 

Contributors  

Reviewers Giorgio Amati, Piero Lanucara 

 

The ChEESE project has received funding from the European Union’s Horizon 2020 

research and innovation programme under the Grant Agreement No 823844 

Ref. Ares(2021)7380580 - 30/11/2021



 

D3.5 Workflow manager for generic HPC workloads    
Version 1.0  

 

2 

 

Change Log 
 

Version Description of Change 

V0.1 Initial draft for internal review 

V0.2 Incorporated internal feedback 

V1.0 Final version 

  

  

  

  

  



 

D3.5 Workflow manager for generic HPC workloads    
Version 1.0  

 

3 

 

Index 

 

1. Introduction ........................................................................................................ 4 

2. WMS-light: Main concepts and implementation ................................................. 4 

2.1. Motivating requirements ................................................................................. 4 

2.2. Distinctive features of WMS-light ................................................................... 7 

2.3. Adaptation for generic HPC workflows and final design ................................. 8 

2.4. Major concepts and specifications ................................................................... 9 

3. Release information .......................................................................................... 14 

3.1. New features since the previous release ........................................................ 14 

3.2. Released packages content ............................................................................ 14 

3.3. Licensing information ................................................................................... 14 

4. Quick-start-guide with the Docker container..................................................... 15 

References .................................................................................................................. 15 

 

 

  



 

D3.5 Workflow manager for generic HPC workloads    
Version 1.0  

 

4 

 

1. Introduction 
The Centre of Excellence for Exascale in Solid Earth (ChEESE) targets at preparing 

flagship codes and a series of Pilot Demonstrators (PDs) for their use as services executed 

on upcoming Exascale computers. The steps necessary to achieve this are split up into 

several tasks in the project. So, Work Package 4 (WP4) focuses on setting up the Pilot 

Demonstrators and Work Package 5 (WP5) targets the implementation of services on 

their basis. These two activities are accompanied by supporting actions around software 

engineering (WP2) and modelling HPC workflows and tools (WP3). 

One of the central aspects of WP3—which this deliverable D3.5 is part of— is to address 

challenges encountered by the Pilot Demonstrators (WP4) that are related to the system 

environment, e.g., managing execution workflows across and data transfer between 

multiple sites. WP3 therefore provides within Task T3.4 a Workflow Management 

System (WMS) that supports most, if not all, off these requirements. 

This deliverable presents the first stable release of the ChEESE HPC Workflow 

Management System – WMS-light. Starting from the requirements specified by the 

ChEESE Pilot Demonstrators, and the initial Prototype (Deliverable D3.2), the WMS-

light has evolved to a general tool that can execute any component-based workflow, also 

beyond the Geoscience domain. This document accompanies the software provided in 

this deliverable by giving background information about the WMS and its latest state, 

release information, as well as a quick introduction how to set up and run WMS-light. 

2. WMS-light: Main concepts and implementation 

2.1. Motivating requirements 

Modern HPC applications rely largely on interdisciplinary approaches that require a tight 

functional integration between diverse software components, implementing the related 

facets of the cross-domain applications. These cross-domain applications consist of 

different highly specialized and optimized codes to simulate specific aspects of the overall 

question to be answered. Here results of one simulation code will be used as part of input 

data for the next code. Geoscience applications, as developed in ChEESE, are a great 

example of such integrated solutions, e.g., an earthquake simulation may provide input 

data for a following tsunami simulation. 

The integration challenges are addressed by consolidating the related software projects 

into a common workflow – a component-based application with the automatically 

managed dependencies (synchronization control, data exchange, etc.) realization, such as 

simplified by Figure 1. 



 

D3.5 Workflow manager for generic HPC workloads    
Version 1.0  

 

5 

 

 

The component-based architecture is of a big advantage when any external data 

dependencies have to be met (components “1.1” and “3.1” in Figure 1) or several parallel 

instances have to be executed (components “2.1”-“2.N” in Figure 1). In particular, the 

component-based architectures are especially beneficial for distributed deplyoments, 

where some parts of the workflow have to run on different systems, like illustrated in 

Figure 2. 

Unlike in tightly-coupled applications—which normally run on a single (and well-known 

to the developers) IT-environment—the components of distributed workflows have to be 

executed on heterogeneous infrastructures that span over diverse resources and may even 

be located at different HPC cites (as depicted in Figure 3). Each resource might have a 

certain specific way of execution and status monitoring of software. This makes 

automation of such distributed workflow executions normally a big challenge for 

component-based applications and introduces the major motivation for having a 

management system that offers basic support for such consolidated workflows – a 

workflow management system (WMS). 

 

 

Figure 1: A bird-view of a workflow. Here one simulation (component 1.1) is run using one code which is fed by 
some external data as input. The output of this simulation is then used by several other codes as input to run N 
simulations (components 2.1 to 2.N). The output of these simulations then may be combined with another code 

(component 3.1) and the results are stored in some external data center.  

  

Figure 2: Realization of application studies with heterogeneous workflow deployments. 

◉ BSC 

(Marenostrum)

◉ TGCC

(Irene)
◉ HLRS

(Hawk)



 

D3.5 Workflow manager for generic HPC workloads    
Version 1.0  

 

6 

 

 

Along with the control actions, the WMS also has to implement the data dependencies 

between the components as well as the proper data transfer mechanisms like the standard 

scp or rsync, the more HPC-specific ones like GridFTP etc., but also the specialized 

protoclos for the communication with the data infrastructure (like EUDAT [1], shown as 

“external data provided” in Figure 3). The current version of WMS-light is implementing 

the most wide-spread remote connection and communication protocols, i.e., ssh/scp. 

In this way, the worklows may run in heterogeneous deployment configurations on 

different infrastructure platforms without any implication on their design. This might be 

useful for conducting several application studies, each running on a currently available 

infrastructure platform. The WMS will aim to automatically resolve the issues related to 

the diverse application execution aspects like access policies, submission mechanisms 

(such as PBS/Torque, SLURM, etc.), status monitoring options, potential firewall 

problems etc.  

Some workflows impose a requirement of dynamic component scaling, meaning that 

the number of parallel running entities of a specific component is not known a-priory and 

will be derived from the dynamic features during the runtime of the workflow components 

(see Figure 4). 

  

Figure 3: Control- and data-flow realization in distributed workflows. The arrows symbolize the control flow 
(above) and data exchange dependencies (below) between the component groups deployed on distributed 

infrastructure. 

1.1

1

2.N

3.1

External

Data 

Provider

External

Data 

Center
2.1

Pre-

Processing

Parallel 

Simulation

Post-

Processing

SCP,

rsync, …

GridFTP,

Unicore, …
HTTP/

REST, …



 

D3.5 Workflow manager for generic HPC workloads    
Version 1.0  

 

7 

 

 

 

2.2. Distinctive features of WMS-light 

The development of the ChEESE WMS solution was largely motivated by two factors 

that are drastically limiting the abilities of the widespread workflow management 

solutions (like Taverna [2], Copernicus [3], Pegasus [4], etc.) to support ChEESE 

applications (see the detailed description in the previous deliverable D3.2[5]): 

 Complex programming models that require considerable changes in the way codes 

are developed. Often code or components have to be compliant with a specific, 

sophisticated API imposed by the WMS (e.g., the API of Copernicus-WMS). 

 Need of installing special extension in the system software stack of the targeted 

infrastructure platform (e.g., quite heavy-weight Condor middleware of the 

Pegasus-WMS). 

 Necessity of using higher-level design tools to create workflow specification like 

in Taverna-WMS. 

In contrast to those solutions, WMS-light is built on a light-weight approach that allows 

to reduce any needed tailoring of the application and/or infrastructure to the absolute 

minimum while still meeting the major workflow execution requirements (Section 2.1). 

This is achieved by providing a very-rich-logic functionality at the workflow engine side. 

WMS-light offers a non-intrusive programming model that is capable of meeting the 

requirement of the most batch-based HPC workflow models. 

To the distinctive feature of WMS-light can be referred: 

 No changes in the original software are needed to make it workflow-enabled 

(achieved by the non-declarative execution model, see details in Section 2.4). 

 

Figure 4: Dynamic workflow component scaling at runtime: Component 1 determines how often Component 2 
has to be run (N times) and Component 3 determines the number of executions for the chained Components 4 and 

5 (M times), whereas N and M are defined at runtime. 



 

D3.5 Workflow manager for generic HPC workloads    
Version 1.0  

 

8 

 

 No changes in the system software of the target system (unlike, e.g., in Pegasus) 

are required (thanks to a light-weight service-packs that are provided for the user-

space). 

 Executable workflow units (i.e., components) can be any user-defined software, 

such as binaries, bash scripts, other local workflow systems, etc. (in contrast to 

Copernicus or Taverna). 

 The workflow specification is kept simple and intuitive for the users/developers 

(based on the JSON format). 

 Rich monitoring functionality and interfaces are provided. 

 

2.3. Adaptation for generic HPC workflows and final design 

Since the initial prototype (see deliverable D3.2), the WMS-light architecture has seen 

some updates, aiming to provide a better support of the identified pilot use cases but also 

to address more generic workflow functionalities than the ones necessary in the 

geoscience community, thus extending the potential application area of WMS-light. Here, 

the initial design from the prototype proved already to be a good basis. 

In particular, the following actions have been completed: 

- The infrastructure-related functions, such as job submission, status monitoring, 

etc. were implemented in a set of scripts that can easily be ported to any HPC 

infrastructure – the service-pack. Service packs were implemented for the major 

PRACE centres, such as CINECA, BSC, TGCC, etc. 

- Support of elastic, horizontally-scalable workflow components with dynamically 

(at runtime) identified number of parallel instances was added. 

- Extended monitoring (with more metrics such as start and end time, duration, etc.) 

with different levels of granularity (workflow- and component-level) was 

provided. 

- Security was addressed in a special component that allows encryption of the 

sensitive user data. 

The final architecture of WMS-light can be seen in Figure 5. The core of WMS-light is 

developed in the Java language, thus allowing portability to a wide range of host systems. 

As an integrated data layer Elasticsearch is used to keep all the workflow-specific 

information, both static (prior to the execution) and dynamic (occurring at runtime) in 

one place. The distributed realization of Elasticsearch helps dealing for many-

components executions, when the service data are generated in many parallel streams. A 

rich set of RESTful web-services build on top of the data layer enable flexible 

communication with it not only using the steering WMS-light’s Java components, but also 

from a rich set of the interfaces exposed to the users. The infrastructure-specific 

operations like job submission, execution status monitoring, etc. are accomplished by 

means of a set of scripts, also installed on the target infrastructure as a service pack. 



 

D3.5 Workflow manager for generic HPC workloads    
Version 1.0  

 

9 

 

 

2.4. Major concepts and specifications 

A typical WMS-light application can be illustrated by a workflow that was developed for 

the PD6 use case, see Figure 6. It consists of 7 components, two of which (Fall3D-*) are 

supposed to run on an external HPC system. All components are wrapped by bash scripts 

that prepare and run the component-specific code (largely implemented in python). 

This workflow life-cycle is depicted in Figure 7 and detailed in deliverable D3.2. Here 

we provide some basic examples of the specifications aiming to better understand the 

underlying concepts. 

 

  

Figure 5: WMS-light architecture. 



 

D3.5 Workflow manager for generic HPC workloads    
Version 1.0  

 

10 

 

 

 

 

 

Figure 7: WMS-light workflow life-cycle. 

  

Figure 6: WMS-light workflow example: PD8. 

User-defined
Arguments

BET-
Pre-processor-VH

WP3_preproc_BET_VH.sh

Weather Data 
Pre-processor

WP3_weather.sh 

Bet_cfg file

Fall3D-Tephra
WP3-fall3d.slurm

Data
Dependencies

bet_ef_out.pick

Meteo 
data

BET-
Post-processor-VH

WP3_preproc_BET_VH.sh

NPY data

Workflow
Components

BET-
Pre- processor-EF(*)

WP3_preproc_BET_EF.sh

Volcanic 
scenarios file (**)
scenarios.txt

BET-
Post-processor-EF

WP3_preproc_BET_VH.sh

bet_ef_out.pick

bet_conf.pick

bet_tephra_out.pick

bet_conf.pick

Obs_time

Bet_cfg file

Obs_time

Bet_cfg file

Obs_time

Fall3D-Postprocess
Alphabeta_ST.slurm

NC data



 

D3.5 Workflow manager for generic HPC workloads    
Version 1.0  

 

11 

 

The component model is a JSON-format-based description of the components and their 

dependencies, exemplified in Figure 8a for the  PD6 application (Figure 6). The 

infrastructure model contains details of the infrastructure platforms, as shown in Figure 

8b for the HPC system of TGCC (Irene). The deployment model specifies the deployment 

options of the workflow components on the infrastructure platforms (Figure 8c). 

 

 

  

    (a)      (b) 

 

(c) 

Figure 8: Example of basic workflow specifications taken from an implemented ChEESE-PD6 use case: a) 
Component Model, b) Infrastructure Model, c) Deployment Model 



 

D3.5 Workflow manager for generic HPC workloads    
Version 1.0  

 

12 

 

For storing security-crucial workflow specification data like account names and 

passwords, WMS-light provides a separate Security Component that implements a 

PBKDF2WithHmacSHA1 based encryption of the sensitive user data. 

The workflow execution requests of the users are handled by the WMS-light runtime 

environment, managing a full set of the monitoring and steering functionalities during the 

workflow instance execution (see Figure 9). 

 

 

The control flow between the workflow components is enforced by tracking the 

components status (SHEDULED, SUBMITTED, RUNNING, COMPLETED) by means of 

the WMS-light’s core java components and services, managed via the Data Layer and 

made available to the user interfaces via the RESTful service end-points, created for every 

unique execution ID (UEID) of the workflow execution. Such information is available at 

different granularity levels, such as the entire workflow (Figure 10a) or for individual 

components (Figure 10b). 

 

 

Figure 9: Running a new workflow instance with WMS-light. 



 

D3.5 Workflow manager for generic HPC workloads    
Version 1.0  

 

13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

Figure 10: Live monitoring information: a) Entire workflow, b) individual components. 



 

D3.5 Workflow manager for generic HPC workloads    
Version 1.0  

 

14 

 

3. Release information 

3.1. New features since the previous release 

Release 1.0 of WMS-light includes a considerably improved set of the basic components 

(such as Resource Manager, Execution Manager etc). and implements a set of features, 

the most important among those are: 

 Dynamic scalability support of the parametrized applications (“parametric” value 

of the “type” field of the Component Model specification) 

 Security manager for keeping the sensible data (like the passwords for the 

platforms in the Infrastructure Model specification) 

 Better support of SLURM-based job management system. 

3.2. Released packages content 

The following table summarizes the release content details. 

Component Description 

Source 

code 

release 

Contains: 

- Run-time environment  

- Dependencies libraries (binaries) 

- Java code of all major components (Execution Manager, Resource 

Manager, etc.) 

- Security manager 

- Basic documentation 

Download: 
 https://fs.hlrs.de/projects/cheese/releases/wms-light-1.0.0.tgz 

HPC 

service 

pack 

Contains: 

- Scripts to be installed in the user space of the targeted HPC platform  

Download: 
 https://fs.hlrs.de/projects/cheese/releases/wms-light-servpack-1.0.0.tgz 

Dockerfile 

Contains: 

- Docker file with recipes for automated building 

Download: 
 https://fs.hlrs.de/projects/cheese/releases/Dockerfile 

 

3.3. Licensing information 

All the WMS-light software components are released under the Apache 2.0 licence, which 

allows for a free use, redistribution and development of the whole codebase. The table 

below summarizes the software requirements of the libraries, used internally by WMS-

light. 

Library Version Description Licence 

Elasticsearch 7.6.1 Serves the Data Layer functionality 
Elastic 

License 

SSHJ 0.29.1 
Serves ssh-based communication 

functionality 
Apache 2.0. 

https://fs.hlrs.de/projects/cheese/releases/wms-light-1.0.0.tgz
https://fs.hlrs.de/projects/cheese/releases/wms-light-servpack-1.0.0.tgz
https://fs.hlrs.de/projects/cheese/releases/Dockerfile


 

D3.5 Workflow manager for generic HPC workloads    
Version 1.0  

 

15 

 

4. Quick-start-guide with the Docker container 
Using a Docker container is the easiest method to start to try the WMS-light software out. 

The major prerequisites are: 

 A Docker installation (requires sudo permisssions) 

 About 2GB of the free disk space 

In order to start with the Docker container, download the Dockerfile (see Section 3.1), 

e.g., with the Linux command: 

 wget https://fs.hlrs.de/projects/cheese/Dockerfile 

 to a dedicated folder and then launch the following command to build a Docker image: 

 sudo docker build --rm -t wmslight:1.0 . 

A container instance can be then run with the following command: 

 sudo docker run --privileged  -ti -e container=docker  \ 

-v /sys/fs/cgroup:/sys/fs/cgroup  wmslight:1.0  

The non-docker “from scratch” installation guides are provided in the README file 

included in the release. 

 

References 
[1] EUDAT - EUROPEAN OPEN SCIENCE CLOUD FOR RESEARCH. Position 

paper: https://www.eudat.eu/sites/default/files/PositionPaperEOSCcard.pdf 

[2] K. Wolstencroft et al. The Taverna workflow suite: designing and executing 

workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids Res. 

2013 Jul; 41(Web Server issue): W557–W561. Published online 2013 May 2. 

[3] Copernicus Workflow Management System - Documentation. 

https://copernicus.readthedocs.io 

[4] Ferreira da Silva et al. Pegasus - Community Resources for Enabling Research in 

Distributed Scientific Workflows. 10th IEEE International Conference on e-Science, 

Oct. 2014 

[5] ChEESE Deliverable D3.2 - Worfklow manager prototype 

 


