Type of publication
Abstract
Year of publication
2021
Publisher
EGU General Assembly 2021
Authors

Jorge Nicolas Hayek Valencia, Dave A. May, and Alice-Agnes Gabriel

Citation

Hayek Valencia, J. N., May, D. A., and Gabriel, A.-A.: Non-planar dynamic rupture modelling across diffuse, deforming fault zones using a spectral finite element method with a non-mesh aligned embedded diffuse discontinuity, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15686, https://doi.org/10.5194/egusphere-egu21-15686, 2021.

Short summary
Faults in earthquake rupture dynamic simulations are typically treated as infinitesimally thin planes with distinct on- versus off-fault rheologies. These faults are prescribed and can be explicitly accounted for with hexahedral or unstructured tetrahedral meshing approaches.

We present a diffuse interface alternative to dynamic rupture modelling on non-mesh aligned faults and, by design, permits modelling of non-planar faults and time-dependent fault geometries. We use se2dr, a spectral finite element (continuous Galerkin) method with a non-mesh aligned embedded diffuse discontinuity for dynamic rupture simulations.