Skip to main content
Wiki|Contact
Log In
  • About
    • Objectives
    • Workplan
    • Partners & Coordinator
    • Collaborators
  • Publications
  • Results
    • Pilots
    • Deliverables
    • Flagship codes
    • Tools
  • Events
    • Workshops
    • Meetings
    • Conferences
    • Training
  • Media
    • News
    • ShEESE
    • In press
    • Videos
    • Dissemination
    • Branding material
  • Search

L-HySEA (Landslide-HySEA)

Intranet
Contact
LinkedIn
Twitter
Code name L-HySEA (Landslide-HySEA)
Developer(s)

Manuel J. Castro Díaz

Jorge Macías Sánchez

Marc de la Asunción

Contact person: Jorge Macías Sánchez

Link

https://edanya.uma.es/hysea/

Short description

T-HySEA solves the 2D shallow water equations on hydrostatic and dispersive versions. T-HySEA is based on a high-order Finite Volume (FV) discretization (hydrostatic) with Finite Differences (FD) for the dispersive version on two-way structured nested meshes in spherical coordinates. Initial conditions from the Okada model or initial deformation, synchronous and asynchronous multi-Okada, rectangular and triangular faults.

Original code level

3

Pilot(s) involved

PD2, PD7, PD8

Main results and References

MAIN RESULTS:

  • Code Audit driven improvements.

  • Better load balancing.

  • Resuming a stored simulation.

  • Asynchronous NetCDF file writing.

  • Asynchronous CPU-GPU memory transfers.

  • Added compression of the NetCDF output files.

  • Support for bigger meshes by using int64_t datatype

REFERENCES:

Macías, J., Vázquez, J.T., Fernández-Salas, L.M., González-Vida, J.M., Bárcenas, P., Castro, M.J., Díaz del Río, V., and Alonso, B. (2015). The Al-Boraní submarine landslide and associated tsunami. A modelling approach. Marine Geology, 361:79-95. [doi:10.1016/j.margeo.2014.12.006].

González-Vida, J.M., Macías, J., Castro, M.J., Sánchez-Linares, C., de la Asunción, M., Ortega, S., and Arcas, D. (2019).  The Lituya Bay landslide-generated mega-tsunami. Numerical simulation and sensitivity analysis,  Natural Hazards and Earth System Science, 19, 369-388 [doi: 10.5194/nhess-19-369-2019].

Performance results
  • Strong scaling reaches 50 % efficiency with 32 GPUs using asynchronous memory transfers.

  • Asynchronous file writing reduces the runtimes up to 50 % for high frequency saving.

The ChEESE project has received funding from the European Union’s Horizon 2020
research and innovation programme under the grant agreement Nº 823844. All rights reserved. Legal Notice.
© CHEESE-COE.EU COPYRIGHT 2018 - 2019
  • About
    • Objectives
    • Workplan
    • Partners & Coordinator
    • Collaborators
  • Publications
  • Results
    • Pilots
    • Deliverables
    • Flagship codes
    • Tools
  • Events
    • Workshops
    • Meetings
    • Conferences
    • Training
  • Media
    • News
    • ShEESE
    • In press
    • Videos
    • Dissemination
    • Branding material
  • Search