Type of publication
Abstract
Year of publication
2021
Publisher
EGU General Assembly 2021
Authors

Sara Aniko Wirp, Alice-Agnes Gabriel, Elizabeth H. Madden, Maximilian Schmeller, Iris van Zelst, Lukas Krenz, Ylona van Dinther, and Leonhard Rannabauer

Citation

Wirp, S. A., Gabriel, A.-A., Madden, E. H., Schmeller, M., van Zelst, I., Krenz, L., van Dinther, Y., and Rannabauer, L.: 3D linked megathrust, dynamic rupture and  tsunami propagation and inundation modeling:  Dynamic effects of supershear and tsunami earthquakes , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15257, https://doi.org/10.5194/egusphere-egu21-15257, 2021.

Short summary
Earthquake rupture dynamic models capture the variability of slip in space and time while accounting for the structural complexity which is characteristic for subduction zones. The use of a geodynamic subduction and seismic cycling (SC) model to initialize dynamic rupture (DR) ensures that initial conditions are self-consistent and reflect long-term behavior. We extend the 2D geodynamical subduction and SC model of van Zelst et al. (2019) and use it as input for realistic 3-dimensional DR megathrust earthquake models. We follow the subduction to tsunami run-up linking approach described in Madden et al. (2020), including a complex subduction setup along with their resulting tsunamis. The distinct variation of shear traction and friction coefficients with depth lead to realistic average rupture speeds and dynamic stress drop as well as efficient tsunami generation.