Type of publication
Year of publication
EGU General Assembly 2021

Bo Li, Alice-Agnes Gabriel, Annukka Rintamäki, and Gregor Hillers


Li, B., Gabriel, A.-A., Rintamäki, A., and Hillers, G.: Array based analysis of induced earthquake characteristics using beamforming and back-projection methods in Helsinki, Finland, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12888, https://doi.org/10.5194/egusphere-egu21-12888, 2021.

Short summary
The evolution and characteristics of induced seismicity in geothermal stimulations can shed light on water pathways and fracture network development. However, these seismic sources are usually difficult to characterize due to their small magnitudes and the low signal-to-noise ratio (SNR) of observational recordings. Heterogeneous and ill-constrained 3D subsurface structure further restricts the local-scale application of array based methods, such as the back-projection method. The 2018 st1 Deep Heat geothermal stimulation experiment in Espoo, Finland, induced thousands of seismic events in the 5-6 km depth range with magnitudes smaller or equal to ML 1.8 (Hillers, et al., 2020). The competent bedrock and absence of a dissipating sedimentary layer results in high SNR seismograms collected by three 4-station arrays, three 25-station arrays and tens of standalone stations located within 5 km distance around the wellhead. These high-quality data facilitate the application of multi-array beamforming and the back-projection methods, to image small-magnitude induced seismicity sources and characterize their properties at reservoir scales.