Type of publication
Year of publication
EGU General Assembly 2021

Marisol Monterrubio-Velasco, J. Carlos Carrasco-Jimenez, Otilio Rojas, Juan E. Rodriguez, David Modesto, and Josep de la Puente 


Monterrubio-Velasco, M., Carrasco-Jimenez, J. C., Rojas, O., Rodriguez, J. E., Modesto, D., and de la Puente, J.: Source Parameter Sensitivity of Earthquake Simulations assisted by Machine Learning , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5995, https://doi.org/10.5194/egusphere-egu21-5995, 2021.

Short summary
After large magnitude earthquakes have been recorded, a crucial task for hazard assessment is to quickly estimate Ground Shaking (GS) intensities at the affected region. Urgent physics-based earthquake simulations using High-Performance Computing (HPC) facilities may allow fast GS intensity analyses but are very sensitive to source parameter values. When using fast estimates of source parameters such as magnitude, location, fault dimensions, and/or Centroid Moment Tensor (CMT), simulations are prone to errors in their computed GS. Although the approaches to estimate earthquake location and magnitude are consolidated, depth location estimates are largely uncertain. Moreover, automatic CMT solutions are not always provided by seismological agencies, or such solutions are available at later times after waveform inversions allow the determination of moment tensor components. The uncertainty on these parameters, especially a few minutes after the earthquake has been registered, strongly affects GS maps resulting from simulations.